

Energy Codes and High Performance Buildings

Eric Makela

Cadmus

10/12/2017

Energy Codes Role in High Performance Buildings

- The minimum (optimum) level of energy efficiency required by law, or
- Stay out of the way and don't create barriers, or

Where We Are with Code Provisions that Support High Performance Buildings

- IRC Provisions
 - Unvented attics
 - Conditioned crawlspaces
 - Framing reduction
 - ACCA Manual D
 - Mechanical ventilation
 - Insulate under radiant floors

- IECC Provisions
 - Insulation installation and air leakage
 - Envelope leakage testing
 - Duct leakage testing
 - ACCA Manual J and S
 - Solar ready

What Did We Add in 2018 IECC to Support High Performance Buildings?

2016 GROUP B COMMITTEE ACTION HEARINGS

APRIL 17, 2016 – APRIL 27, 2016 KENTUCKY INTERNATIONAL CONVENTION CENTER LOUISVILLE, KY

Air Sealing and Insulation Installation Table

- Requires supply and return register boots to be sealed to the subfloor or drywall
- Requires recessed lights to be sealed to the finished surface
- Requires spaces behind electrical/phone boxes to be insulated

Envelope – Glazing U-factors

Table R402.1.2 Insulation and Fenestration Requirements by Component				
Climate Zone	2015 Glazing U-factor	2018 Glazing U-factor		
1	NR	NR		
2	0.40	0.40		
3	0.35	0.32		
4	0.32	0.32		
5	0.32	0.30		
6	0.32	0.30		
7	0.32	0.30		
8	0.32	0.30		

RESNET/ICC 380-2016 for Building Envelope Testing

Standard for Testing Airtightness of Building Enclosures, Airtightness of Heating and Cooling Air Distribution Systems, and Airflow of Mechanical Ventilation Systems"

- Provides clear guidance on how to conduct an envelope air leakage test
- Standard will be used by all HERS raters in the industry
- Standard 380 allows for single point test In addition to multipoint as required by ASTM E 779

Ductwork

• Allows for ductwork to be buried in insulation

Figure 2. Example partially buried duct (left), buried duct across the truss bottom truss chord (middle), and buried duct on the ceiling (right).

Fan Efficacy

TABLE R403.6.1 (N1103.6.1) WHOLE-HOUSE MECHANICAL VENTILATION SYSTEM FAN EFFICACY-

FAN LOCATION	AIR FLOW RATE MINIMUM (CFM)	MINIMUM EFFICACY (CFM/WATT)	AIR FLOW RATE MAXIMUM (CFM)
HRV or ERV	<u>Anv</u>	<u>1.2 cfm/watt</u>	<u>Anv</u>
Range hoods	Any	2.8 cfm/watt	Any
In-line f an	Any	2.8 cfm/watt	Any
Bathroom, utility room	10	1.4 cfm/watt	< 90
Bathroom, utility room	90	2.8 cfm/watt	Any

For SI: 1 cfm = 28.3 L/min.

ERI Approach and Renewables

- 2015 "backstop" if taking credit for renewables
- 2009 "backstop" if not taking credit for renewables
- Increased ERI scores

2018 IECC ERI Scores			
Climate Zone	2018 ERI Score	2015 ERI Scores	
1 – 2	57	52	
3	57	51	
4	62	54	
5	61	55	
6	61	54	
7-8	58	53	

ERI Approach and ANSI/RESNET/ICC 301-2014

- RESNET/ICC 301 as a basis for the ERI approach
 - Gives credit for on-site power production
 - Defines renewables
 - Solar energy
 - Wind energy
 - Biomass

Lighting Equipment (Prescriptive)

 A minimum of 90 percent of the lamps in permanently installed lighting fixtures shall be high-efficacy lamps

Where Do I Think That We Are Going?

Code Development Process Theory

Code Development Process Reality

Where Do I Think That We Are Going?

- Short Term
 - Focus on better compliance with energy codes
 - Focus on increasing quality of construction practices
 - Reflect innovative construction practices that can save energy

Where Do I Think That We Are Going? Long Term

Driven by Market Pull Activities

Source: Northeast Energy Efficiency Partnership

Eric Makela Senior Associate

(208) 629-1447

Eric.Makela@Cadmusgroup.com

30

Facebook.com/CadmusGroup

Linkedin.com/company/the-cadmus-group